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Synopsis

This paper reviews the literature concerning the measurement of friction coefficients (p) for
elastomers and summarizes our data measured under static or breakaway conditions against
epoxy painted steel using ~ 176 psi contact pressure. Although largely related to missile launch
system applications, the p values presented are specific for interface pairs, normal loading force,
and speed. Therefore, this article should serve as a starting point for those requiring specific
friction data for selected elastomers.

INTRODUCTION

Over the last two decades we have paid considerable attention to the
identification of polymer coatings with low static or breakaway friction
coefficients for use in missile launch applications.! These efforts culminated in
the use of sodium etched Teflon bonded to cast polyurethane and molded
neoprene rubber components in the Poseidon and Trident missile launch
systems and Armalon (Teflon-impregnated glass fabric) bonded to EPDM
pads for the MX (now Peacekeeper) missile launch system.?

For a variety of applications, additional studies have been conducted to
identify or develop materials with either high or low friction coefficients at a
variety of contact pressures and surface speeds against polyurethane painted
steel and graphite /epoxy composite. '

Because of the wide range of available materials and test variables it was
considered valuable to review much of the data available in the open litera-
ture by addressing the questions listed below:

What is a coeflicient of friction?

How is friction measured?

What is the influence of test speed on friction?

What is the influence of polymer type on friction?

What is the influence of rubber compounding ingredients on friction?

What is the influence of hardness and crosslink density of rubber on friction?
What is the influence of shape factor on friction?

How does contact pressure or normal force influence friction?

What is the influence of contact time on friction?

How does aging of the rubber product influence friction?

An attempt is made to answer these questions and selected formulations
and friction values, mainly those related to the development of rubber
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compounds with high static or breakaway friction coefficients against
graphite/epoxy, are presented.

DISCUSSION

What is a Coefficient of Friction?

Friction or resistance to sliding is generally represented by the letter F and
is equal to the normal load (N) on the contacting surfaces multiplied by the
coefficient of friction (p), which is the sliding force divided by the normal
force:

F=uN (1)
p=F/N @)

As is readily apparent, p is dependent upon the normal force used to measure
the sliding force. Therefore, any discussions of friction should contain infor-
mation pertaining to the normal force used in its measurement. At no time
can the coefficient of friction be considered a material property, independent
of the test method used in its measurement.

For most systems, the initial breakaway or static coefficient of friction is
greater then the dynamic coefficient of friction as measured between contact-
ing surfaces moving relative to each other. In general, most data in the
literature are for dynamic applications. This is due to the fact that most work
reported has been related to the tire industry, rheology of polymer melts such
as extrusion, and automotive or rail car braking applications. However, for
missile launch application the static or slip-stick characteristic of a material is
of interest, particularly after long contact times at relatively low contact
pressures.
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Fig. 1. Schematic of apparatus for measuring breakaway force under ultra-low speed condi-
tions.
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How is Friction Measured?

The number of experimental test fixtures for measuring friction and friction
coefficients seem to be limited only by the experimenter’s imagination and
cost limitation. However, all share the common features of a normal load
placed on the materials in contact and a force transducer parallel to the
direction of motion. The test setup used by D. Boes at Westinghouse R & D is
shown in Figure 1. This equipment was used to collect much of the breakaway
or static friction data presented in this article. Relative motion of the
contacting surfaces can be varied from 0.003 to 0.060 in./min, but 0.060
in./min is a rate frequently used and is considered to be a static test.

Another test fixture for determination of p static used by G. E. Rudd at
Westinghouse R & D is shown schematically in Figure 2. In this fixture,
referred to as a 2D (for two-dimensional) test fixture the blocks of rubber can
be up to ~ 4” X 4” square and thickness can be varied from < 0.125” to 4”.

The equipment used by Schallamach,® shown in Figure 3, can be used to
determine either p static or p dynamic.

Epoxy Painted Steel
' \ '

$

Adhesive Bond Line
Rubber Bonded to
Steel Plates

Fig. 2. Double shear test fixture for measuring friction.

Towing Lines

Weight
Fig. 3. Sketch of the experimental layout used by Schallamach.?
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What is the Influence of Test Speed and Temperature
on Friction?

. In general, as the testing speed changes, and therefore the temperature at
the contact surface increases due to frictional heating, the coefficient of
friction changes quite markedly. This is shown graphically by Figure 4 for a
“pinhead” glass, used in bathroom windows, against acrylonitrile rubber.? In
the form of Figure 4, this graph presents a somewhat confusing picture of
the relationship between friction, velocity, and temperature. However, using
the Time-Temperature Superposition Principle, and shifting the curves
along the horizontal axis to form a Master Curve at 20°C, the velocity
dependence of friction coefficients can be developed as shown in Figure 5.%

Construction of such Master Curves has a sound theoretical base as sup-
plied by Schallamach.’ It is interesting to note that construction of such
curves for natural rubber is generally not possible, since natural rubber has a
tendency to crystallize, and therefore the data between —26°C and —40°C
will not fit the transformation as depicted by Eq. (3)

~8.86(T — T))
1015 + (T—1T) )

logpar = 10810[ I(T - Ts)] =

where T is the test temperature and T, is a temperature approximately 50°C
above the glass transition temperature. For natural rubbers, a continuous
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Fig. 4. Coefficient of friction on pin-head glass of unfilled acrylonitrile-butadiene rubber at
various temperatures, as function of sliding velocity cm/s. From Ref. 4.
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log °TV
Fig. 5. Master curve for coefficient of friction of acrylonitrile-butadiene rubber at 20°C,
derived from the graphs in Figure 4, from Ref. 4.

Master Curve for friction has been obtained only on dusted: silicon-carbide
paper. Crystallization appears, therefore, to predominantly affect the ad-
hesion component of friction as opposed to the hysteresis component. These
data are shown in Figure 6. Examples of Master Curves for noncrystallizing
rubber are shown in Figure 7.°

These results have been explained by the existence of two different friction
mechanisms. One of them is molecular adhesion of the type envisaged in the
example of natural rubber. This is the only mechanism operative for friction
of rubber on smooth glass. The other process is mechanical energy loss due to
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Fig. 6. Master curves for NR at 20°C; unfilled rubber on glass (a), on dusted silicon carbide
paper (b), and on clean silicon carbide paper (c); filled with 50 phr HAF on clean silicon carbide
paper (d). From Ref. 4.
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Fig. 7. Master curves for coefficient of friction of noncrystallizing unfilled gurn rubbers at 20°C
on various tracks. (——) nondusted silicon carbide; (— - —) dusted silicon carbide; (-----) pinhead

glass. From Ref. 4.

gross deformation of the rubber surface by track asperities, as in the silicon-
carbide paper example. These energy losses or hysteresis losses, according to
Greenwood and Tabor,® are the single source of friction on a lubricated track.
Because of adhesion friction on a dry track, deformations are much larger
than on a lubricated surface, and therefore produce abrasion.

‘What is the Influence of Polymer Type on Friction?

As shown in the previous section, the values for coefficient of friction for
natural rubber are highest for very low speeds of separation of the contacting
surfaces, that is breakaway or static coefficient of friction, and decrease with
increasing speed of separation. This conclusion appears to be universal regard-
less of base polymer type. Similar results are shown in Figure 8, for SBR-based
rubber compounds containing different levels of styrene in the copolymer.*

Polypropylene
Polymethylmethacryiate
Polyvinylchloride

Nylon
Potyformaldehyde
Poiytetrafiuoroethylene

Coefficient of Friction

0.5

1 1 1 L 1 [ J
-8 60 —40 -20 O 20 40 &
Glass Transition Temperature
Fig. 8. Coefficient of friction of SBR compounds with different stryene content (specified by
their glass transition temperature) on various plastic tracks.
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Fig. 9. Master curves for coefficient of friction of black-filled, noncrystallizing rubbers at 20°C
on silicon carbide paper. From Ref. 4.

What is the Influence of Compounding Ingredients on Friction?

Although the literature examined does not dwell much on this subject area,
the influence of carbon black has been reported for selected rubbers and these
data are given in Figure 9.* Addition of carbon black to rubber does not
displace the curves along the velocity axis, but flattens the maximum in p
values to plateaus, with the exception of butyl rubber. Two effects most
probably contribute to the difference of filled and unfilled compounds. First,
the distribution of relaxation times is broadened by the addition of filler, as
deduced by Ferry’” from Payne’s data.® This, in turn, affects the hysteresis
component ‘of friction. Second, the true area of contact is smaller with filled
rubber, because of the greater hardness imparted by the filler. Therefore, the
adhesion mechanism is reduced in importance. Although no data were found
on the influence of other compounding ingredients, it appears reasonable and
will be shown later, that the addition of oils, plasticizers, processing aids, or
other materials with low surface energies that can diffuse or bloom on the
rubber surface, will reduce the friction coefficient of the material.

What is the Influence of Hardness and Crosslink Density of
Rubbers on Friction?

In a similar way to the addition of carbon black, it is speculated that
increased crosslink density in the rubber will lead to reduced friction coeffi-
cient. This is because a high crosslink density gives rise to a harder rubber.
Hence, for maximum static friction coefficients, it is concluded that little or no
oil should be included in the compound formulation, and the crosslink density
should be kept as low as practically possible, consistent with having physical
properties that meet specification limits.
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What is the Influence of Shape Factor?

Although nothing specific regarding the influence of shape factor on friction
coefficients was found in the literature, our work does suggest that p values
should be compared on samples with similar shape factors. Shape factor is
defined as the loaded area divided by the force-free area® or:

S = LW/(2¢(L + W)) (4)

where: L = sample length
W = sample width
t = sample thickness

This in effect leads to high shape factors at high loads, and the greater the
shape factor, the higher the effective hardness and the lower the measured
friction coefficient, as explained previously.

How Does Contact Pressure Influence Friction?

Contact pressure and shape factor are not independent variables as alluded
to in the previous section, since shape factor increases with increasing contact
pressure. It is also true that as sample hardness increases, p decreases. This is
shown in Figure 10*° for Adiprene polyurethane polymers and in Figure 11 for
natural rubber tire tread compound,® but our experience shows this to be true
for other materials as well.

It appears that these results are valid only as long as the sliding velocities
are low enough for a frictional temperature increase to be negligible. Quite
erroneous conclusions may be drawn from experiments in which this is not
true, as is demonstrated by Figure 11. The graph shows the coefficient of
friction and the simultaneous increase in temperature for a black-filled NR

Contact Surface; 125 Rms Steel
. Normal Load; 20 Ib (9 kq)
S Linear Velocity: 52 ft/min ( 0.26 m/s}
B 0.0 Test Temperature; 75°F, {24°C}
& .
5 Adiprene
g
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f =y
£
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VM w 50 & 70 &

Hardness, Durometer D

Fig. 10. Effect of surface hardness on friction. Measured on an experimental dynamic friction
tester based on an ice friction tester developed by Research Division of The Goodyear Tire &
Rubber Co.
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Fig. 11. Right-hand side: Coefficient of friction (full lines) and frictional temperature rise
(broken lines) of a needle-thermocouple sliding on an NR tread compound. Left-hand side:
Coefficient of friction reduced to 20°C. (O) normal load 34 g; (a) normal load 72 g; (O0) normal
load 154 g. From Ref. 13.
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Fig. 12. Temperature dependence of coefficient of friction p of noncrystallizing unfilled
rubbers at 1 cm/s. From Ref. 5.
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Fig. 13. Effect of contact surface on lubricity of Adiprene.

compound at speeds up to 400 cm/s.® The friction coefficient is seen to
decrease with increasing load in apparent agreement with the load dependence
of friction.!! If, however, the friction temperature rise is taken into account,
and the data converted to a constant temperature, 20°C, all points fall on one
continuous curve.!? What at first appeared to be a load effect is actually a
temperature effect. The data given in Figure 12° were collected for 1 cm/s
(~ 0.03 ft/s) sliding velocity.

The nature of the contact surface is important in bearing applications.
Figure 13 compares the kinetic coefficient of friction of an Adiprene poly-
urethane against steel machined to rms 10 and rms 125 finishes, as well as
against a typical thermoplastic material. The least friction is experienced with
the highly polished steel surface, while the highest friction coeflicient is
observed with the thermoplastic. Plastics do not dissipate heat from the
contact area as well as metals, and it is this heat buildup that is responsible
for the higher friction coefficient measured for the plastic. For applications
where friction must be minimized, use of a mating surface that will dissipate
the heat is desirable as is increased hardness of the polymer.

Other examples of decreased coefficient of friction with increasing pressure
were found in the literature. The friction coefficient for Teflon was shown to
decrease from 0.3 at low pressures to 0.1 at 900 atmospheres (13,000 psi).'* For
polyethylene, increased contact pressure decreased p from 0.2 to 0.05.1* When
the polyethylene was kerosene soaked, the kerosene acted as a plasticizer or
lubricant and p values decrease further to 0.025.1

‘What is the Influence of Contact Time on Friction?

When a polymer surface is kept in static contact with another polymer
surface for long times at high contact pressure, or for short times at low
contact pressures and high temperatures, there is an opportunity for polymer
chains to diffuse across the interface and lead to very high interfacial bond
strengths that approach the tensile strength of the base compounds. An entire
body of work has been carried out in this area by Soviet scientists.!® In
addition, extender oils, plasticizers, antioxidants, etc., can diffuse from one
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material to the other across the contacting interface.!®17

When a rubber or polymer surface is in contact with metallic surfaces,
painted surfaces, or composite surfaces, the ability of polymer molecules to
diffuse into the hard surface is reduced. The bond strength that develops,
often called “stiction,” is generally low. Stiction is also influenced by the
contact pressure. Generally the lower the contact pressure the lower the
stiction force.

One other area of concern, when contacting cured rubber with hard surfaces
for long periods of time (days to months), is the diffusion of oil or plasticizer
from the bulk material to the surface of the material, in particular the
interface. This can cause a reduction in p which can result in failure of items
which rely on retention of high p values over time.

Some experimental results on the diffusion (or squeezing) of oil and plasti-
cizer from rubber compounds held under 400 psi contact pressure against a
steel surface will be described later in this paper, but it appears that these
results corroborate work previously reported in the literature with regard to
diffusion of oils from rubber compounds.1®!”

How Does Aging of the Rubber Product Influence Friction?

Although nothing specific was found in the literature regarding the in-
fluence of elastomer aging on friction, changes in friction would depend on the
influence of aging on the rubber. That is, if the rubber softens and becomes
more fluid on aging, it would be expected that friction would increase (i.e., the
adhesive component of friction would increase). If the rubber hardens, the
friction would be expected to decrease or stay about the same. One example of
the influence of 10-year aging on friction is described in the next section.

EXPERIMENTAL RESULTS

Development of High Breakaway Friction Materials

Based upon the results shown in Table I (measured at ~ 176 psi contact
pressure) for formulations 1 and 2, it can be seen that higher shape factors
yield lower coefficients of static friction, thus once again confirming the theory
that harder materials and high normal loads reduce the measured p values. In
addition, comparing the friction results for formulations 1 and 5 (SBR), it is
also shown (Table II) that removing the oils and plasticizers from the
compound formulation increases the measured p value (0.96 with vs. 1.47
without oil and plasticizer) against epoxy painted steel. The results are not so
different for the CR compound of Table I (compare results for formulation 2
with 4). However, the reason for this may be that the processing oil used in
the CR formulations is more compatible with the polymer to begin with and
the tendency to bloom to the surface is low. Also, the improvement in friction
coefficient derived by reducing the surface lubricity, may not have been great
enough to offset the increase in hardness that results from the removal of the
plasticizers. This may not be the case for the SBR, since even after removal of
the plasticizers, it is still softer than the CR compound with plasticizers.
Further consideration of this topic is given in the next section.

In order to determine how the coefficient of friction changes as a function of
aging, a neoprene rubber compound used in the vertical support pads for the
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TABLE IIl
Friction for Compound 4® as a Function of Postcure
Friction
Postcure coeff.?,
(h @ 300°F) ()
0 1.3
Control
0.5 1.47
1.0 1.33
4.0 1.23

2See Table I for control p and Table II for formulation.
b Normal pressure 176 psi.

Trident submarine launch system, stored at ambient condition for approxi-
mately 10 years, was tested for friction coefficient and compared with friction
coefficient values for material only three years old. The results of this
evaluation indicate a reduction in friction coefficient from 1.02 for three-year-
old samples compared to 0.7 for the 10-year-old sample (Table I). This is most
likely due to the stiffening of neoprene rubber with time due to crystallization
and continued cure. In this case the primary cause is most likely continued
cure, since crystallization is complete within a few months for TRT neoprene,
and within hours for type W neoprene.'®

Also, it was of interest to know how the friction characteristics of elas-
tomers change as a function of abrasive wear. To address this issue, samples of
both formulations 4 and 5 were abraded with sandpaper to remove the surface
skin, followed by coefficient of friction measurements. The results indicate a
decrease in friction for the SBR from 1.19 to 0.99 after abrasion, and for CR
from 1.37 to 1.22 after abrasion. The exact reason for this observation is not
totally clear, except that perhaps the actual contact area is decreased due to
the resulting rough surface produced by abrasion, or exposure of oil in the
bulk rubber after removal of the skin.

The effect of oven postcure on the friction properties of neoprene rubber
was evaluated by postcuring samples of formulation 4 for 1, 2, and 4 h at
300°F. The samples were then tested for friction properties and compared
against the control. The results of these tests, given in Table III, are some-
what ambiguous in that the postcured samples have a higher coefficient of
friction than the control, yet the coeflicient of friction seems to decrease as a
function of postcure time. One might argue that the changes in friction as a
function of postcure time are insignificant and within experimental error of
the test procedure, yet one would expect to see a decrease in friction with
postcure due to stiffening of the rubber upon further cure. However, these
results indicate that if any real change in friction is occurring, it is not very
large.

It appears that from a high friction perspective, either compound 4 or 5
(Table I) would be the best choice of all materials examined, depending upon
what other requirements are imposed. However, a consideration of the desired
mechanical properties, abrasion resistance, flame resistance, and ozone resis-
tance as well as long-term aging characteristics are also important in any
material selection process.
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TABLE IV
Results of IR Scans of Exudate Squeezed from Rubber?

Relative amount

Sample ID of exudate® IR analysis of exudate
Form #1SBR (R & D) 4 Uncertain
Form #2 CR (R&D) 6 Paraffin wax
Form #4 CR (R&D) 0 Nothing observed
Form #5SBR (R&D) 10 Petroleum oil
25639° 4 Pariffin wax
6601° 2 Paraffin wax
7020° 2 Uncertain
7041° 2 Misc. organics
7061° 10 Uncertain

2 Rubber samples pressed under 400 psi of pressure for 30 min and exudate examined.

b Commercial material from Westinghouse Air Brake Co., courtesy of Mr. D. Ratloff.

°Samples rated on a scale from 0 to 10, with 10 being worst case and 1 being little exudate
found.

Infrared Spectroscopy of Steel Surface in Contact With
Various Rubbers

In some of our testing it was noted that both CR and SBR rubbers
(procured commercially in sheet form) maintained a shear load for a few hours
but then began to slide at a rate of 2-10 in./min. We speculated that under
pressure the oil and /or plasticizer used in the rubber compounds was exuding
to the surface from the bulk rubber, and the oil at the interface acted as a film
lubricant lowering the coefficient of friction.

In order to verify this theory in a laboratory test, selected rubber samples
were held in contact with a polished steel plate for 30 min at 400 psi. The steel
surface was then flushed with chloroform, the liquid concentrated, and the
concentrate placed on a KBr pellet for infrared analysis. This procedure was
followed for the rubber samples listed in Table IV and the relative amounts of
exudate were rated in a qualitative manner. It is interesting to note that
samples with large amounts of exudate were the samples that slipped during
full-scale testing against epoxy painted steel.

Although not unequivocally proven, it appears that oil /wax exudate con-
tributed to reduced p values and allowed slippage during the full-scale testing.

CONCLUSIONS

1. The coefficient of friction is comprised of two parts, hysteresis loss due to
surface deformation and molecular adhesion at the material /substrate
interface.

2. Test methodology and material properties such as hardness, influence the
measured value of the coefficient of friction and as such the coefficient of
friction cannot be considered an inherent material property.

3. Plasticizers, oils, and waxes that can exude to the interface have a
profound effect on the measured frictional properties of polymers, in
particular elastomers.

4. The higher the sliding speed during testing, the lower the measured value
of the coefficient of friction.
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5. Harder substrate pairs yield lower values of friction coefficients compared
to similar materials that are softer, under otherwise identical test condi-
tions.

6. Higher shape factors in part design will yield lower measured values for
friction compared to the same materials using a design with a smaller
shape factor. This is due to the mechanical stiffening associated with large
shape factor values.

7. Higher normal loads yield lower measured friction values.

8. Rubber formulations developed by us and identified in Table II have
measured coefficients of friction greater than 1.2 against epoxy painted
steel, which is significantly greater than most materials identified in the
literature or tested by us (Table I).

9. Abrasion of the rubber surface results in lower values of friction compared
with the same material having a virgin surface.

10. The influence of long-term room temperature aging (~ 10 years) on
friction is not known unequivocally. However, one example shows friction
values for three-year-old material to be ~ 1.02 while values for 10-year-old
material were determined to be 0.7 and 0.96 on duplicate samples.

The authors wish to acknowledge the assistance of Mr. D. G. Smith for rubber compounding
and data compilation, Messrs. D. J. Boes and G. R. Kelecava for friction measurements, Dr. D. H.
Lemmon for infrared analysis, Mr. R. Yan of the Westinghouse Marine Division for technical and
financial support in the conduct of this work, and Ms. J. A. Decker for typing the manuscript.
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